بهره‌برداری بهینه از سیستم مخازن حوزۀ آخیز کرخه با استفاده از الگوریتم جستجوی موجودات همزیست (SOS)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی منابع آب، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز، اهواز، ایران

2 استادیار گروه هیدرولوژی و منابع آب، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز، ایران.

چکیده

در چند دهۀ اخیر، الگوریتم‌های فراکاوشی نقش مؤثری در مسائل مختلف مهندسی از جمله بهره‌برداری بهینه از مخازن داشته‌اند. به­دلیل پیچیدگی مسائل مدیریت منابع آب و در نتیجه نیاز روزافزون به توسعه و رواج روش‌های مزبور، در پژوهش حاضر با استفاده از روشی مبتنی بر الگوریتم جستجوی موجودات همزیست، به مدل‌سازی بهره‌برداری بهینه از سیستم‌های پیچیده چند مخزنی پرداخته شده است. در گام اول، عملکرد موفقیت‌آمیز روش با استفاده از تعدادی تابع محک استاندارد ارزیابی شد. پس از آن به منظور بهره‌برداری ماهانه، از مخازن تنگ‌معشوره، سازبن و کرخه، واقع در حوزۀ آبخیز کرخه استفاده شد. تخصیص بهینه برای تأمین نیاز آبی چهار منطقۀ کشاورزی، با اولویت تأمین نیاز آبی زیست‌محیطی برای دورۀ 5 ساله (سال آبی 60-59 تا 64-63) در نظر گرفته ‌شد. نتایج به­ دست­ آمده از الگوریتم جستجوی موجودات همزیست، با نتایج به­ دست­ آمده از الگوریتم‌های تکاملی توسعه یافتۀ دیگر، ازجمله الگوریتم‌های ژنتیک و ازدحام ذرات، مقایسه شد. نتایج بررسی­ ها نشان می­ دهد که در مقایسه با سیاست‌های حاصل از اعمال الگوریتم‌های ژنتیک و ازدحام ذرات، سیاست بهینه شده توسط الگوریتم جستجوی موجودات همزیست با شاخص پایداری 99/99، 11/99، 92/82 و 47/79،  عملکرد مناسب‌تری در بهره‌برداری بهینه از سیستم‌های چند مخزنی دارد.
 

کلیدواژه‌ها


عنوان مقاله [English]

OOptimization Operation of Karkheh River Basin Multi-Reservoirs System Operation by using Symbiotic Organisms Search (SOS) Algorithm

نویسندگان [English]

  • Saeid Akbarifard 1
  • Mohammadreza Sharifi 2
1 Shahid Chamran University of Ahvaz
2 Department of Hydrology and Water Resources, Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Iran.
چکیده [English]

In recent decades, Meta-heuristic algorithms has played an effective role in solving different engineering problems such as optimal operation of reservoirs. Owing to the complexity of water resources management problems, as well as, the daily growing need for the development and expansion of these methods, in this research, a model based on Symbiotic Organisms Search (SOS) algorithm was developed for modeling the optimal operation of complex multi-reservoirs systems.  In the first step, the performance of the method was successfully assessed through several benchmark functions. Then it was used for the monthly operation of Tangemashure, Sazbon and Karkheh reservoirs located in Karkheh basin. The optimal allocation were considered for meeting the irrigation demands of 4 agricultural regions, and priority was with allocation of water for the environmental demands., for a 5 year period (from 1980-81 to 1984-85). The results of SOS algorithm were compared with other developed evolutionary algorithms including Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The results indicated that, optimized operation policy through SOS algorithm with the sustainability index of 99.99, 99.11, 82.92 and 79.47 percent for Sazbon, Tangemashure, upstream and downstream of Karkheh reservoirs was more appropriate performance as compared to GA and PSO algorithms in optimal operation of multi-reservoirs systems.

کلیدواژه‌ها [English]

  • Symbiotic Organisms Search Algorithm
  • Optimal Operation
  • Karkheh Basin
  • Meta-heuristic algorithms
  • Multi-Reservoirs System

Baghlani, A. H. and Hajivandi, Z. 2016. Stabilize the water level in open channels using symbiotic organisms search algorithm. Proceeding of the 9th­­ National Congress on Civil Engineering. May 10-11. Ferdowsi University of Mashhad. Mashhad, Iran. (in Persian)

 

Bozorg-Haddad, O., Azarnivand, A., Hosseini-Moghari, S. M. and Loáiciga, H. A. 2017. Optimal
operation of reservoir systems with the symbiotic organisms search (SOS) algorithm. J. Hydroinform. 19(4): 507-521.

 

Cheng, M. Y. and Prayogo, D. 2014. Symbiotic Organisms Search: A new metaheuristic optimization algorithm. J. Comput. Struct. 139, 98-112.

 

Ehteram, M., Allawi, M. F., Karami, H., Mousavi, S. F., Emami, M., Ahmed, E. S. and Farzin, S. 2017. Optimization of chain-reservoirs’ operation with a new approach in artificial intelligence. Water Resour. Manage. 31(7): 2085-2104.

 

Esat, V. and Hall, M. J. 1994. Water resources system optimization using genetic algorithm. Hydroinform. 94, 225-231.

 

Hashimoto, T., Stedinger, J. R. and Loucks, D. P. 1982. Reliability, resilience, and vulnerability criteria for water resource system performance evaluation. Water Resour. Res. 18(1): 14-20.

 

Holland, J. 1975. Adaptation in Natural and Artificial System. University of Michigan Press.

 

Kennedy, J. and Eberhart, R. 1995. Particle Swarm Optimization (PSO). Proceeding of IEEE International Conference on Neural Networks. Nov. 27-Dec. 1. Perth. Australia.

 

Labadie, J. W. 2004. Optimal operation of multi-reservoir systems: state of the art review. J. Water Resour. Plan. Manage. 130(2): 93-111.

 

Nourani, V., Abolvaset, N. and Salehi, K. 2012. A hybrid goal programming method and adaptive neural-fuzzy inference system for optimal operation of a multi-objective two-reservoir system. J. Iran-Water Resour. Res. 8(2): 1-11. (in Persian)

 

Panda, A. and Pani, S. 2016. A symbiotic organism search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems. Appl. Soft. Comput. 46, 344-360.

 

Qaderi, K., Arab, D., Teshnehlab, M. and Ghazagh, A. 2010. Intelligent operation modeling of reservoirs using group method of data handling (GMDH). J. Iran-Water Resour. Res. 6(3), 55-67. (in Persian)

 

Qaderi, K., Akbarifard, S., Madadi, M. R. and Bakhtiari, B. 2017. Optimal operation of multi-reservoirs by water cycle algorithm. Proceedings of the Institution of Civil Engineers-Water Management. Thomas Telford Ltd.

 

Sandoval-Solis, S., McKinney, D. C. and Loucks, D. P. 2011. Sustainability index for water resources planning and management. J. Water Resour. Plan. Manage. 137(5): 381-390.

 

Simonovic, S. P. 1992. Closing gap between theory and practice. J. Water Resour. Plan. Manage. 118(3):
262-280.

 

Tejani, G., Savsani, V. and Patel, V. 2016. Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization. J. Comput. Design Eng. 3(3): 226-249.

 

Tran, D. H., Cheng, M. Y. and Prayogo, D. 2015. A novel multiple objective symbiotic organisms search (MOSOS) for time-cost-labor utilization tradeoff problem. Knowl. Based Syst. 94, 132-145.

 

Wardlaw, R. and Sharif, M. 1999. Evaluation of genetic algorithms for optimal reservoir system operation. Water Resour. Plan. Manage. 125(1): 25-33.

 

Yeh, W. G. 1985. Reservoir management and operation models: a state-of-the-art review. Water Resour. Res. 21(12): 1797-1818.