برآورد توزیع سرعت در کانال های مرکب فاضلاب روتنگ با استفاده ازتئوری آنتروپی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار گروه عمران، دانشکده فنی و مهندسی، دانشگاه مراغه

2 دانشجوی دکتری عمران- مدیریت منابع آب، دانشکده مهندسی عمران، دانشگاه تبریز

3 استادیار گروه مهندسی عمران، دانشگاه مراغه

چکیده

برآورد توزیع سرعت جریان از مباحث مهم در هیدرولیک جریان کانال‌های روباز، فاضلاب‌روها، و رودخانه­هاست. وجود پدیدۀ سرعت حداکثر زیر سطح آب (پدیدۀ دیپ)، برآورد توزیع سرعت را در جریان­های روباز با پیچیدگی­هایی مواجه می­کند. در این مقاله توزیع سرعت در کانال­های مرکب فاضلاب‌رو تنگ، با استفاده از تئوری آنتروپیبرآورد و تأثیر توابع توزیع تجمعی مختلف بر منحنی‌های توزیع سرعت بررسی شده است. مقایسۀ نتایج دو تابع آنتروپی چیو و مارینی در برآورد توزیع سرعت و تخمین پارامترها نشان می­دهد که مدل پیشنهادی دقت بالاتری ارائه داده است. همچنین، مقایسۀ داده­های میدانی تحقیقات گذشته با نتایج مدل پیشنهادی نشان می­دهد که مدل پیشنهادی در ترازها و مقاطع عرضی مختلف تطابق مناسبی با داده­های میدانی دارد. نتایج بررسی­ها بیانگر دقت قابل قبول مدل پیشنهادی در برآورد توزیع سرعت (R2 برابر 86/0، خطای نسبی برابر 11 درصد، RMSE برابر  0758/0، و MAPE برابر 84/7 درصد) است. همچنین، مقایسۀ این مدل با مدل توزیع سرعت چیو نشان می­دهد که مدل پیشنهادی علاوه بر اینکه نسبت به مدل­های موجود ساده­تراست، محدودیت‌های مدل‌های پیشین را ندارد و عملکرد بهتری نیز نشان می­دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimating the Velocity Distribution in Narrow Combined Sewers using Entropy Theory

نویسندگان [English]

  • Marjan Moazamnia 2
  • sina sadeghfam 3
چکیده [English]

Estimation of flow velocity distribution is considered to be one of the main issues in the open channels, sewers, and rivers. Occurrence of the maximum velocity phenomenon below free surface (Dip phenomenon), is cause of concern and complexity for estimation of the velocity distribution in open channel flows. In this paper, the velocity distribution in the narrow sewer combined channels was estimated using the entropy theory, and the impact of different cumulative distribution functions on the velocity distribution has been investigated. Accuracy evaluation of Marini and Chiu entropy functions in the estimation of the velocity distribution and parameters suggested that a new model with higher accuracy can be proposed in order to optimizethe velocity estimation in these types of channels. Also, the comparison between field data of former studies and the result of proposed model indicated that the proposed model is in accordance with field data in the different levels and depths of channel. The results also showed acceptable accuracy of the proposed model in the velocity distribution estimation (R2=0.86, relative error = 11%, MAPE = 7.84% and RMSE = 0.0758). Further, comparison of proposed model and Chiu velocity distribution model shows that the proposed model has better performance in spite of more simplicities than other existing models.

کلیدواژه‌ها [English]

  • Dip Phenomenon
  • Entropy Theory
  • Narrow Sewer
  • Velocity Distribution

 

Barbe, D. E. 1990. Probabilistic analysis of bridge scour using the principle ofmaximum entropy. Ph. D. Thesis. Louisiana State University, Baton Rouge.

 

Bonakdari, H. 2011. Entropy and its application in computation of velocity distribution in sewers. Proceeding of the World Environmental and Water Resources Congress: Bearing Knowledge for Sustainability. California, United States.

 

Bonakdari, H. and Moazamnia, M. 2015. Modeling of velocity fields by the entropy concept in narrow open channels. KSCE J. Civil Eng. 19(3): 779-789.

 

Bonakdari, H., Larrarte, F., Lassabatere, L. and Joannis, C. 2008. Turbulent velocity profile in fully-developed open channel flows. Environ. Fluid Mech. 8(1): 1-17.

 

Chiu, C. L. 1987. Entropy and probability concepts in hydraulics. J. Hydraul. Eng. 113(5): 583-600.

 

Chiu, C. L. 1988. Entropy and 2-D velocity distribution in open channels. J. Hydraul. Eng. 114(7):
738-756.

 

Chiu, C. L. 1989. Velocity distribution in open channel flow. J. Hydraul. Eng. 115(5): 576-594.

 

Chiu, C. L. 1991. Application of entropy concept in open-channel flow. J. Hydraul. Eng. 117(5): 615-628.

 

Chiu, C. L. and Chiou, J. 1986. Structure of 3-D flow in rectangular open channels. J. Hydraul. Eng. 109(11): 1050-1068.

 

Chiu, C. L. and Lin, G. F. 1983. Computation of 3-D flow and shear in open channels. J. Hydraul. Eng. 112(11): 1424-1440.

 

Cui, H. 2011.Estimation of velocity distribution and suspended sediment discharge in open channels using entropy. M. Sc. Thesis. Texas A&M University, College Station, TX.

 

Cui, H. and Singh, V. P. 2012. On the cumulative distribution function for entropy-based hydrologic modeling. T- ASABE. 55(2): 429-438.

 

Esmaeili-Varaki, M., Ghorbani-Nasralah-Abadi, S. and Navabian, M. 2013. Evaluation of entropy based chiu’s method for prediction of the velocity distribution and discharge in rivers. J. Water Soil Conserv. 20(6): 147-164. (in Persian)

 

Farsadizadeh, D., Hosseinzadeh Dalir, A., Ghorbani, M. A. and Samadian-Fard, S. 2011. Estimation of flow velocity distribution in smooth-bed open channels with a smooth bed using entropy theory and genetic programming. Water Soil Sci. (Agr. Sci.). 21(3): 61-74 (in Persian)

 

Guo, J. and Julien, P. Y. 2006. Application of modified log-wake law in open-channels. Proceeding of the World Environmental and Water Resource Congress: Examining the Confluence of Environmental and Water Concerns. May 21-24.Omaha, Nebraska, United States.

 

Jaynes, E. T. 1957. Information theory and statistical mechanics 2. Phys. Rev. 108(2): 171-190.

Larrarte, F. 2006. Velocity fields within sewers: An experimental study. Flow Measure. Instrum.
17(5): 282-290.

 

Luo, H. 2009. Tsallis entropy based velocity distributions in open channel flows. M. Sc. Thesis, Texas A&M University. College Station, TX.

 

Luo, H. and Singh, V. P. 2011. Entropy theory for two-dimensional velocity distribution. J. Hydrol. Eng. 18(2): 331-339.

 

Marini, G., De Martino, G., Fontana, N., Fiorentino, M. and Singh, V. P. 2011. Entropy approach for 2D velocity distribution in open-channel flow. J. Hydraul. Res. 49(6): 784-790.

 

Moazamnia, M. and Bonakdari, H. 2014. Velocity distribution and estimation of discharge in sewers by shannon entropy concept. Bimonthly J. Water Wastewater. 25(2), 26-35. (in Persian)

 

Shannon, C. E. 1948. A mathematical theory of communication. At. & T. Tech. J. 27(3): 379-423.

 

Tsallis, C. 1988. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52(1-2): 479-487.

May 21-25. Omaha, Nebraska, United States.