مدلسازی عددی و فیزیکی خصوصیات جریان در کانال مرکب منشوری با زبری ناهمگن

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد سازه های آبی دانشگاه لرستان

2 استادیار بخش مهندسی آب دانشگاه لرستان

3 دانشگاه لرستان

چکیده

مدلسازی خصوصیات جریان در کانال‌های مرکب یکی از مهمترین مسائل مهندسی هیدرولیک است. از مهمترین پارامترهای جریان در کانال‌های مرکب نیز می­توان به تنش برشی ظاهری اشاره کرد که در اثر اختلاف سرعت جریان در کانال اصلی و سیلاب‌دشت‌ها در محل اتصال کانال اصلی به سیلاب‌دشت‌ها به­وجود می‌آید. تنش برشی ظاهری باعث ایجاد آشفتگی و گردابه‌های سه­بعدی در مرز کانال اصلی و سیلاب‌دشت‌ها می‌شود. اختلاف بین زبری کانال اصلی و سیلاب‌دشت‌ها نیز یکی دیگر از عوامل تشدیدکنندۀ تنش برشی ظاهری در مرز بین زیر مقاطع کانال مرکب است. در این تحقیق، خصوصیات جریان در کانال مرکب منشوری با زبری ناهمگن با استفاده از مدلسازی فیزیکی و عددی بررسی شده است. مدلسازی فیزیکی در آزمایشگاه هیدرولیک دانشگاه تهران و مدلسازی عددی آن با استفاده از نرم­افزار دینامیک سیالاتی محاسباتی Flow 3Dانجام گرفته است. نتایج هر دو مدلسازی نشان می­دهد که افزایش زبری سیلاب‌دشت‌ها موجب کاهش سرعت متوسط عمقی و نیز تشدید گرادیان تنش برشی مرزی جریان در محل اتصال مقطع اصلی و سیلاب‌دشت‌ها می‌شود. همچنین،  بررسی نتایج مدلسازی عددی نشان می­دهد که نرم‌افزار Flow 3D دارای دقت مناسب برای پیش­بینی خصوصیات جریان در کانال مرکب با زبری ناهمگن است. ارزیابی عملکرد مدل‌های آشفتگی موجود در نرم‌افزار نیز نشان می­دهد که مدل آشفتگی RNG، نسبت به سایر مدل‌های آشفتگی، به­دلیل مدلسازی بهتر گردابه‌ها در محل اتصال کانال اصلی و سیلاب‌دشت‌ها در مدلسازی خصوصیات جریان در کانال مرکب دارای عملکرد بهتری  است.

کلیدواژه‌ها


عنوان مقاله [English]

Physical and Numerical Modeling of Flow Properties in Prismatic Compound Open Channel with Heterogeneous Roughness

چکیده [English]

Modeling of flow through the compound open channel is one of the main problems in the field of hydraulic engineering. One of the main parameter related to the flow properties in the compound open channel is Shear Stress. The shear stress is because of difference of velocities between the main channel and floodplains. The Shear Stress causes of turbulence and vortex creation on the border of main channel and floodplains. The difference between the roughness of main channel and floodplains intensities the shear stress in the border zone. In this investigation using the physical and numerical modeling the flow properties in the heterogeneous roughness prismatic compound open channel was studied. The study was carried out in the hydraulic laboratory of Tehran University and numerical modeling was conducted using the Flow 3D as famous computational fluid dynamic (CFD) tool. The results indicated that the Flow 3D software has high ability for modeling the flow characteristics in heterogeneous roughness prismatic compound open channel and the RNG turbulence mode is suitable for modeling the vortex on the border of both sections.
 
Keywords: Compound Open Channel, Flow 3D, Heterogeneous Roughness, Shear Stress.

کلیدواژه‌ها [English]

  • Compound Open Channel
  • Flow 3D
  • Heterogeneous Roughness
  • Shear Stress

Ackers, P. 1993. Stage-discharge functions for two stage channels: The impact of new research. J. Inst. Water Environ. Manage. 7(1): 52-59.

 

Al-Khatib, I. A., Abaza, Kh. A. and Fkhidah, I. A. 2014. Prediction of zonal and total discharges in smooth straight prismatic compound channels using regression modeling. Flow Meas. Instrum. 38, 40-48.

 

Atabay, S. and Knight, D. 2006. 1-D modelling of conveyance, boundary shear and sediment transport in overbank flow. J. Hydraul. Res. 44(6): 739-754.

 

Azhdary-Moghadam, M. and Tajnesaie, M. 2010. Numerical modeling of secondary current cells in trapezoidal channels with uniform roughness. J. Model. Eng. 8(20): 57-70. (in Persian)

 

Babaeyan-Koopaei, K., Ervine, D. A., Carling, P. A. and Cao, Z. 2002. Velocity and turbulence measurements for two overbank flow events in River Severn. J. Hydraul. Eng. 128(10): 891-900.

 

Bousmar, D. and Zech, Y. 1999. Momentum transfer for practical flow computation in compound channels. J. Hydraul. Eng. 125(7): 696-706.

 

Conway, P., O'Sullivan, J. J. and Lambert, M. F. 2012. Stage-discharge prediction in straight compound channels using 3D numerical models. Proceedings of the Institution of Civil Engineers, Water Management. 166(1): 3-15. doi:10.1680/wama.11.00015

 

Dehdar-Behbahani, S. and Parsaie, A. 2016. Numerical modeling of flow pattern in dam spillway’s guide wall. Case study: Balaroud dam, Iran. Alexandria Eng. J. 55(1): 467-473. doi:10.1016/j.aej.2016.01.006.

 

Hamidifar, H. and Omid, M. H. 2013. 3D simulation of flow in open compound channels by Flow 3D model. Proceeding of the 11th  Iranian Hydraulic Conference. Urmia. Iran. (in Persian)

 

Huthoff, F. A. C., Roos, P., Augustijn, D. and Hulscher, S. 2008. Interacting divided channel method for compound channel flow. J. Hydraul. Eng. 134(8): 1158-1165.

 

Khatua, K., Patra, K. C. and Mohanty, P. K. 2012. Stage-discharge prediction for straight and smooth compound channels with wide floodplains. J. Hydraul. Eng. 138(1): 93-99.

 

Knight, D. W. and Demetriou, J. D. 1983. Flood plain and main channel flow interaction. J. Hydraul. Eng. 109(8): 1073-1092.

 

Knight, D. W. and Hamed, M. E. 1984. Boundary shear in symmetrical compound channels. J. Hydraul. Eng. ASCE. 110(10): 1412-1429.

 

Kordi, H., Amini, R., Zahiri, A. and Kordi, E. 2015. Improved Shiono and Knight method for overflow modeling. J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0001239.

 

Mohanta, A., Naik, B., Patra, K. C. and Khatua, K. K. 2014. Experimental and numerical study of flow in prismatic and non-prismatic section of a converging compound channel. Int. J. Civil Eng. Res. 5(3): 203-210.

 

Mohseni, M., Mohammad-Vali-Samani, J. and Ayoubzadeh, S. A. 2013. Distribution of velocity in open compound channels with vegetated floodplains. J. Hydraul. 8(3): 63-75. (in Persian)

 

Moreta, P. J. and Martin-Vide, J. P. 2010. Apparent friction coefficient in straight compound channels. J. Hydraul. Res. 48(2): 169-177.

 

Myers, W. 1978. Momentum transfer in a compound channel. J. Hydraul. Res. 16(2): 139-150.

 

Myers, W. and Brennan, E. 1989. Flow resistance in compound channels. J. Hydraul. Res. 28(2): 141-155.

 

Othman, F. and Valentine, E. M. 2006. Numerical modelling of the velocity distribution in a compound channel. J. Hydrol. Hydromech. 54(3): 269-279.

 

Ozbek, T. and Cebe, K. 2003. Comparison of methods for predicting discharge in straight compound channels using apparent shear stress consepts. Turk. J. Eng. Environ. Sci. 28(2): 101-109.

 

Parsaie, A. 2016. Analyzing the distribution of momentum and energy coefficients in compound open channel. Model. Earth Syst. Environ. 2, 1-5. doi:10.1007/s40808-015-0054-x.

 

Parsaie, A. and Haghiabi, A. H. 2015a. Computational modeling of pollution transmission in rivers. Appl. Water Sci. doi:10.1007/s13201-015-0319-6.

 

Parsaie, A. and Haghiabi, A. H. 2015 b. The effect of predicting discharge coefficient by neural network on increasing the numerical modeling accuracy of flow over side weir. Water Resour. Manage. 29, 973-985. doi:10.1007/s11269-014-0827-4.

 

Parsaie, A., Haghiabi, A. H. and Moradinejad, A. 2015. CFD modeling of flow pattern in spillway’s approach channel Sustainable. Water Resour. Manage. 1, 245-251. doi:10.1007/s40899-015-0020-9.

 

Rameshwaran, P. and Naden, P. 2003. Three-dimensional numerical simulation of compound channel flows. J. Hydraul. Eng. 129:(8), 645-652.

 

Sellin, R. H. J. 1964. A laboratory investigation into the interaction between the flow in the channel of a river and that over its flood plain. La Houille Blanche. 19(7): 793-801.

 

Shiono, K. and Knight, D. W. 1991. Turbulent open-channel flows with variable depth across the channel. J. Fluid Mech. 222, 617-646.

 

Tang, X. and Knight, D. W. 2009. Analytical models for velocity distributions in open channel flows. J. Hydraul. Res. 47(4): 418-428.

 

Teymourei, E., Barani, G. A., Janfeshan, H. and Dehghanie, A. A. 2013. Coefficient estimate flood flow channels comprising secondary. J. Basic Appl. Sci. Res. 3(2s): 639-646.

 

Thornton, C. I., Abt, S. R., Morris, C. E. and Fischenich, J. C. 2000. Calculating shear stress at channel-overbank interfaces in straight channels with vegetated floodplains. J. Hydraul. Eng. 126(12): 929-936.

 

Tominaga, A., Nezu, L., Ezaki, K. and Nekagawa, H. 1989. Three-dimensional turbulent structure in straight open channel flows. J. Hydraul. Res. 27(1): 149-173.

 

Yang, K., Cao, S. and Knight, D. W. 2007. Flow patterns in compound channels with vegetated floodplains. J. Hydraul. Eng. 133(2): 148-159.

 

Younesi, H. A., Omid, M. H. and Ayyoubzadeh, S. A. 2013. The hydraulics of flow in non-prismatic compound channels. J. Civil Eng. Urban. 3(6): 342-356.