بررسی آزمایشگاهی تأثیر رس و نانو رس مونت موریلونیتی بر کاهش آبشستگی در پایین دست صفحات مشبک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مربی گروه مهندسی عمران دانشگاه مراغه، مراغه، ایران

2 دانشجوی دکترای عمران گرایش آب و سازه‌های هیدرولیکی، دانشگاه زنجان

3 دانشیار گروه مهندسی عمران دانشگاه مراغه، مراغه، ایران

چکیده

در این پژوهش از یک راه­حل غیر سازه‌ای و دوستدار محیط ­زیست برای کاهش عمق آبشستگی پایین­ دست صفحات مشبک استفاده شده است. بالادست صفحات مشبک که حوضچه آرامش نامیده می­شود، به‌طور کلی در برابر فرسایش محافظت می­شود ولی پایین‌دست صفحات همواره در معرض آبشستگی جریان قرار دارد. از آنجا که رس و مادۀ نانوساختار رس از نظر زیست­محیطی قابلیت سازگاری مناسبی با سیستم رودخانه و اکولوژی آن دارد، رسوب بستر پایین‌دست صفحات مشبک با رس و مادۀ نانوساختار رس مخلوط و پس از تزریق، تأثیر آن در کاهش آبشستگی سه نوع جریان مختلف ارزیابی شد. نتایج آزمایش‌ها از تأثیر مثبت رس و ترکیب آن با نانو رس در کاهش عمق آبشستگی پایین‌دست صفحات مشبک حکایت دارد. بهترین عملکرد به­هنگام ترکیب رس و نانو رس مونت موریلونیتی اتفاق افتاده است که با به­کارگیری آن، طول آبشستگی 33 درصد کاهش یافته است. همچنین، با افزودن رس و ترکیب رس- نانو مونت موریلونیت، کاهش میانگین به­ترتیب 39 و 46 درصد در عمق آبشستگی نیز دیده شده است. با توجه به نتایج به‌دست ‌آمده از این تحقیق می­توان گفت که استفاده از ترکیب رس و نانو رس مونت موریلونیتی تأثیری مثبت در کنترل آبشستگی دارد و در مواردی می­تواند بسیار مفید باشد که از دیدگاه عملی، از جمله در رودخانه­ ها، نتوان با مصالحی نظیر بتن از بستر آنها محافظت کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental Investigation of Clay and Nano-Clay Montmorillonite Effect on Scour Reduction at Downstream of Screen

نویسندگان [English]

  • Mehdi Rezaie 1
  • Amir Qhaderi 2
  • R. Daneshfaraz 3
1 Department of Civil Engineering, University of Maragheh, Iran
2 M.Sc. Student of Civil Engineering, Department of Civil Engineering, University of Maragheh, Iran
3 Associate Professor, Civil Engineering Department, Faculty of Engineering, University of Maragheh, Maragheh, Iran.
چکیده [English]

In this study, a non-structural and eco-friendly solution has been used to reduce scouring at downstream of screens. The upstream of screen which are known as stilling basin, are protected against scouring but the downstream of screens always are subjected to the flow scouring. Since clay and nanostructured-clay has suitable compatibility with river system and ecology as a view of the environment, the bed sediment at the downstream of the screen have been admixed with clay and nanostructured-clay, after grouting its effect on scour reduction have been evaluated in the three different flow. The experimental results indicate the positive effect of clay and nanoclay on scour depth reduction at the downstream of screens. The best performance has been occurred for clay and nano-montmorillonite clay mixture. The positive effect of clay and nano-montmorillonite clay mixture for scour length reduction is observable, and by utilizing this mixture, the length of scouring has been decreased 33 percent. Furthermore by addition of clay and nano-montmorillonite clay mixture, the scour depth reduced up to 39 and 46 percent. According to the result, utilizing clay and nano-montmorillonite clay mixture has a positive effect on scouring control, and as a practical view, it could be very useful for some cases such as rivers which bed protection by some materials such as concrete is not possible.

کلیدواژه‌ها [English]

  • Downstream Souring
  • Experimental Model
  • Nano Structured-Montmorillonite Material

 

Abdelhaleem, F. S. F. 2013. Effect of semi-circular baffle blocks on local scour downstream clear-overfall weirs. Ain Shams Eng. J. 4(4): 675-684.

 

Bozkus, Z., Çakır, P. and Ger, M. 2007. Energy dissipation by vertically placed screens. Can. J. Civil Eng. 34(4): 557-564.

 

Chabert, J. and Engeldinger, P.1956. Etude des affouillements autour des piles de points (Study of scour at bridge piers). Bureau Central d’Etudes les Equipment d’Outre-Mer. Laboratoire National d’Hydraulique, France.

 

Chiew, Y. M. 1992. Scour protection at bridge piers. J.Hydraul. Eng. 118(9): 1260-1269.

 

Elnikhely, E. A. 2016. Minimizing scour downstream of spillways using curved vertical sill. Proceedings of the 19th International Water Technology Conference.Apr. 21-23. Sharm El Sheikh, Egypt.

 

Elsebaie, H. I. 2013. An experimental study of local scour around circular bridge pier in sand Soil. Int. J. Civil Environ. Eng. 13(1): 23-28.

 

Goel, A. 2010. Scour investigations behind a vertical sluice gate without apron. Pac. J. Sci. Technol.
 11(2): 59-65.

 

Karimaee, M. and Zarrati, A. R. 2011. Effect of collar on time development and extent of scour hole around cylindrical bridge piers. Int. J. Eng. 25(1): 11-16.

 

Lambe, T. W. and Whithman, R. V. 1969. Soil Mechanics. SI Version. John Wiley, New York.

 

Lee, S. O., Seungh, K. and Sturm T. W. 1961. Comparison of laboratory and field measurements of bridge pier scour. U.S. Geological Survey, USA.

 

Melville, B. W. 1997. Pier and abutment scour. Integrated approach. J. Hydraul. Eng. 123(2): 125-136.

 

Mohammadi, M. and Niazian, M. 2013. Investigation of nano-clay effect on geotechnical properties of Rasht clay. Int. J. Adv. Sci. Technical Res. 3(3): 37-46.

 

Nasr-Allah, H. T., Yasser A. M., Mohamed, A. G. and Shawky, A. 2016. Experimental and numerical simulation of scour at bridge abutment provided with different arrangements of collars. Alex. Eng. J. doi:10.1016/j.aej.2016.01.021. (in Press)

 

Rajaratnam, N., and Hurtig, K. I. 2000. Screen-type energy dissipator for hydraulic structures. J. Hydraul. Eng. 126(4): 310-312.

 

Raudkivi, A. J. and Ettema, R. 1983. Clear-water scour at cylindrical piers. J. Hydraul. Eng. ASCE. 109(3): 338-350.

 

Sadeghfam, S., Akhtari, A. A., Daneshfaraz, R. and Tayfur, G. 2014. Experimental investigation of screens as energy dissipaters in submerged hydraulic jump. Turk. J. Eng. Environ. Sci. 38(2): 126-138.

 

Sanoussi, A. A. and Habib E. A. 2008. Local scour at rounded and sloped face with skew angles. Proceedings of the International Conference on Construction and Building Tecnology. June 16-20. Kuala Lumpur, Malaysia.

 

Singh, S. M. and Maiti. P. R. 2012. Local scour around a circular pier in open channel. Int. J. Emerg. Technol. Adv. Eng. 2(5): 454-458.

 

Tuna, M. C. and Emiroglu, M. E. 2011. Scour profiles at downstream of cascades. Sci. Iranica. 18(3): 338-47.

 

Tuna, M. C. and Emiroglu, M. E. 2013. Effect of step geometry on local scour downstream of stepped chutes. Arab. J. Sci. Eng. 38(3): 579-88.

 

Uddin, F. 2008. Clays, nanoclays, and montmorillonite minerals. Metall. Mater. Trans. A. 39(12): 2804-2814.

 

Yalin, M. S. 1971. Theory of Hydraulic Models. Macmillan, London.

 

Zaid, H. M., Mohd, R. T. and Ibtehaj T. J. 2014. Stabilization of soft soil using nanomaterials. Res. J. Appl. Sci. Eng. Technol.

 

Zarrati, A. R., Gholami, H. and Mashahir M.B. 2004. Applicationof collar to control scouring around rectangular bridge piers. J. Hydraul. Res. 42(1): 97–103.

 

Zhang, G. 2007. Soil nanoparticles and their influence on engineering properties of soils. Geo-Denver Congress: New Peaks in Geotechnics. Feb. 18-21. Denver, Colorado, United States.