بررسی روابط بافت خاک و پارامتر مقیاس بندی برای برآورد رطوبت خاک

نویسندگان

1 مربی آموزشکده کشاورزی شیروان، دانشگاه فردوسی مشهد

2 استادیار گروه آبیاری دانشکده کشاورزی، دانشگاه فردوسی مشهد،

چکیده

     مدل آریا و پاریس روش معمولاً پذیرفته شده­ایبرای تبدیل منحنی توزیع اندازه ذرات به منحنی مشخصة آب خاک با استفاده از پارامتر مقیاس بندی (Scaling parameter, α)است. در مدل اولیة آریا و پاریس (1981)، پارامتر مقیاس بندی برای تمام گروههای بافتی خاک، ثابت (38/1) فرض شده بود. در سالهای اخیر، مطالعات متعدد نشان داده است که پارامتر مقیاس بندی مقدار ثابتی نیست و کمیت آن بستگی به توزیع اندازة ذرات خاک دارد. به منظور بررسی روابط بین بافت خاک و پارامتر مقیاس بندی و همچنین برآورد تقریبی منحنی رطوبتی خاک تحقیقاتی انجام شد که نتایج آن دراین مقاله ارائه می­شود. در این مطالعه، پارامتر α تابعی از عدد مقیاس بندی شدة تعداد ذرات کروی برای تخمین طول خلل و فرج در نظر گرفته شده است . نتایج نشان داد که α مقداری ثابت نیست و با افزایش اندازة ذرات خاک به ویژه برای بخش شن تغییر می‌کند. از آنجاکه تعیین پارامتر مقیاس‌بندی مشکل است، برای تخمین پارامتر مقیاس‌بندی بر اساس پارامترهای توزیع اندازه ذرات خاک یک معادلة رگرسیونی به دست آمد (96/0 r2=) و دقت برآورد معادله و روش پارامتر با مقدار ثابت(38/1= α) در تعدادی از خاکهای مناطق آمل، بابل و کرج مقایسه شدند. پیش‌بینی­های رطوبت خاک نتایج قابل قبول تا عالی را با مقادیر اندازه‌گیری شده نشان داد. استفاده از یک مقدار ثابت(38/1 = α) برای رطوبتهای کم منتج به پیش بینی­های کمتر و برای رطوبتهای بیشتر منجر به پیش‌بینی­های بیشتر شد. منحنی مشخصه آب خاک به طرز قابل قبولی برای سه نمونه خاک شبیه‌سازی شد.

کلیدواژه‌ها


خوشنود یزدی، ا. 1370.برآورد منحنی رطوبتی خاک از روی خصوصیات فیزیکی در برخی از خاکهای ایران.پایان
   
نامه کارشناسی ارشد.دانشکده کشاورزی دانشگاه تهران. 140 صفحه.

2-رضائی، ع. و نیشابوری، م.ر. 1381.تخمین منحنی خصوصیات آب خاک از منحنی توزیع اندازه ذرات جرم
     
مخصوص ظاهری و حقیقی خاک.مجله دانش کشاورزی. جلد 12، شمارة 3، 29-37.

3-Arya, L. M., and Paris, J. F. 1981. A physicoemprical model to predict soil moisture characteristics from particle-size distribution and bulk density data. Soil Sci.Soc. Am. J. 45, 1023-1030.

4-Arya, L. M., Richter, J. C. and Davidson, S. A. 1982. A comparison of soil moisture characteristic predicted by the Arya-Paris model with laboratory-measured data. P.1-14. In: Saxton, K. E. et al (Eds.). Estimating generalized soil-water characteristics from texture. Washington State Univ., Pullman, WA 99164. Scientific Paper No. 6911.

5-Arya, L. M., Leij, F. J. Van Genuchten, M. Th. and Shouse, P. J. 1999. Scaling parameter to predict soil water chararcteristic from particle-size distribution data. Soil Sci. Soc. Am. J. 63, 510-519.

6-Basile, A., and D’Urso, G. 1997. Experimental correlation of simplified methods for predicting water retention curve in clay-loamy soils from particle-size determination. Soil Technol. 10, 261-272.

7-Brooks, R. H., and Corey, A. T. 1964. Hydraulic properties of porous media. Hydrol. Paper 3, Colo. State Univ., Fort Collins.

8-Campbell, G. S. 1974. A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci. 117, 311-314.

9-Evans, R., Cassel, D. K. and Sneed, R. E. 1996. Measuring soil water for irrigation scheduling: monitoring methods and devices. North Carolina Cooperative Extension Service. Publication No. AG 452-2

10-Gupta, S. C., and Larson, W. E. 1979. Estimating soil water retention characteristics from particle size distribution, organic matter percent and bulk density. Water Resour. Res. 15, 1633-1635.

11-Hillel, D. 1971. Soil and water, Physical  principles and processes. New York, Academic press. pp: 288.

12-Jonasson, S. A. 1992. Estimating of Van Genuchten parameters from grain-size distribution. pp. 443-451. In: Van Genuchten, M. Th.  et al. (Ed.) Proceedings of Int. workshop on indirect methods of estimating the hydraulic properties of unsaturated soils. Univ. of California. Riverside. 11-13 Oct. 1989. U.S. Salinity Lab. and Dep. Soil and Envir. Sci. Riverside, CA.

13-Kravchenko, A., and Zhang, R. 1998. Estimating the soil water retention from particle-size distribution: A fractal approach. Soil Sci. 163, 171-179.

14-Marshall, T. J. 1958. A relation between permeability and size distribution of pores.
J. Soil Sci. 9, 1-8.

15-Millington, R. J., and  Quirk, J. P. 1961. Permeability of porous solids. Trans. Faraday Soc. 57, 1200-1206.

16-Minansy, B., Mc Brantney, A. B. and Bristow, K. L. 1999. Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma. 93, 225-253.

17-Mualem, Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12, 513-522.

18-Nielsen, D. R., Biggar, J. W. and Erh, K. T. 1973. Spatial variability of field-measured soil water properties. Hilgardia. 42, 215-260.

19-Nimmo, J. R. 1997. Modeling structured influences on soil water retention. Soil Sci. Soc. Am. J. 61, 712-719.

20-Rajkai, K., Kabos, S. Van Genuchten, M. Th. and Jansson, P. E. 1996. Estimation of water-retention characteristics from bulk density and particle-size distribution of Swedish soils. Soil Sci. 161, 832-845.

21-Schapp, M. G., and Bouten, W. 1996. Modeling water retention curves of sandy soils using neural networks. Water Resour. Res. 32, 3032-3040.

22-Schapp, M. G., Leij, F. J. and Van Genuchten, M. Th. 1999. A bootstrap neural network approach to predict soil hydraulic parameters. pp. 1237-1250. In Van Genuchten,
M. Th. et al (Ed.) Proceedings of Int. workshop on characterization and measurments of the hydraulic properties of unsaturated porous media. Univ. California, Riverside, CA. 22-24 Oct. 1997. Univ. of California, Riverside, CA. 

23-Schuh, W., Cline, R. L. and Sweeny, M. D. 1988. Comparison of a laboratory procedure and a textural model for predicting in situ soil water retention. Soil Sci. Soc. Am. J. 52, 1218-1227.

24-Schuh, W. M. 1992. Calibration of soil hydraulic parameters through separation of subpopulations in reference to soil texture. pp. 489-498. In: Van Genuchten, M. Th. et al. (Ed.) Proceedings of Int. workshop on indirect methods of estimating the hydraulic properties of unsaturated soils. Univ. of California. Riverside. 11-13 Oct. 1989. U. S. Salinity Lab. and Dep. Soil and Envir. Sci. Riverside, CA.

25-Tietje, O., and Hennings, V. 1995. Accuracy of the saturated hydraulic conductivity prediction by pedo-transfer functions compared to the variability within FAO textural classes. Geoderma. 69, 71-84.

26-Tyler, S. W., and Wheatcraft, S. W. 1989. Application of fractal mathematics to soil water retention estimation. Soil Sci. Soc. Am. J. 53, 987-996.

27-U. S. D. A. 1982. Procedures for collecting soil samples and methods of analysis for soil survey. Soil Survey Investigations. Report No.1.

28-Van Genuchten, M. Th. 1980. A closed- form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892-898.

29-Van Genuchten, M. Th., and Leij, F. 1992. On estimating the hydraulic properties of unsaturated soils. pp. 1-14. In: Van Genuchten, M. Th. et al (Ed.) Proceeding of. Int. workshop on indirect methods of estimating the hydraulic properties of unsaturated soils. Univ. of California. Riverside. 11-13 Oct. 1989. U. S. Salinity Lab. and Dep. Soil and Envir. Sci. Riverside, CA.

30-Wosten, J. H. M., Lilly, A. Nemes, A. and Le Bas, C. 1999. Development and use of a database of hydraulic properties of european soil. Geoderma. 90, 169-185.