کاربرد شبکه عصبی مصنوعی در پیش‌بینی هدایت هیدرولیکی اشباع با استفاده از پارامترهای فیزیکی خاک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه آبیاری و آبادانی دانشکده آب و خاک پردیس کشاورزی و منابع طبیعی دانشگاه تهران

2 دانشیار گروه آبیاری و آبادانی دانشکده آب و خاک پردیس کشاورزی و منابع طبیعی دانشگاه تهران

3 دانشجوی کارشناسی ‌ارشد گروه مهندسی آب دانشکده کشاورزی دانشگاه تبریز

چکیده

ویژگی­های هیدرولیکی خاک همچون هدایت هیدرولیکی اشباع و غیراشباع در مطالعات زیست محیطی نقش مهمی را ایفا می­نمایند.  از آنجائی­که اندازه­گیری مستقیم این قبیل ویژگی­های هیدرولیکی خاک امری وقت­گیر و هزینه­بر است روش­های غیرمستقیمی چون توابع انتقالی و شبکه­های عصبی مصنوعی بر مبنای پارامترهای سهل الوصول خاک توسعه یافته­اند.  در این خصوص در این مطالعه، از شبکه عصبی مصنوعی به­ منظور تخمین هدایت هیدرولیکی اشباع خاک با استفاده از داده­های اندازه­گیری شده منحنی مشخصه رطوبتی خاک و جرم مخصوص ظاهری استفاده شده­ است.  با استفاده از داده­های اندازه­گیری شده جرم مخصوص ظاهری خاک، بعد فرکتالی منحنی مشخصة رطوبتی، مکش در نقطه ورود هوا، تخلخل مؤثر، مقادیر هدایت هیدرولیکی اشباع خاک با استفاده از شبکه عصبی مصنوعی تخمین زده شدند.  در مرحله آموزش مدل از 114 داده اندازه­گیری شده منحنی مشخصة رطوبتی و جرم مخصوص ظاهری خاک و در مرحله تست از 28 داده باقیمانده استفاده شد.  مقادیر MSE و R2 در مرحله تست مدل شبکه عصبی مصنوعی با چهار پارامتر ورودی به­ترتیب 0028/0 و 76/0 محاسبه شدند.  مقایسه عملکرد مدل شبکه عصبی مصنوعی با دو مدل ارائه شده توسط رائولز و همکاران نشان داد که مدل شبکه عصبی مصنوعی با دقت بالاتری هدایت هیدرولیکی اشباع خاک را پیش‌بینی می­نماید.   

کلیدواژه‌ها


Ahuja, L. R., Naney, J. W., Green, R. E. and Nielsen, D. R. 1984. Macroporosity to characterize spatial variability of hydraulic conductivity and effects of land management. Soil Sci. Soc. Am. J. 48, 699-702.

Ahuja, L. R., Cassel, D. K., Bruce, R. R. and Barnes, B. B. 1989. Evaluation of spatial distribution of hydraulic conductivity using effective porosity data. Soil Sci. 148, 404-411.

Alizadeh, A. 2004. Soil Physics. Imam Reza University Pub. (in Farsi)

Alizadeh, A. 2005. Soil, Water, Plant Relationships. Imam Reza University Pub. (in Farsi)

Amini, M., Abbaspour, K. C., Khademi, H., Fathianpour, N., Afyuni, M. and Schulin, R. 2005. Neural network models to predict cation exchange capacity in arid regions of Iran. European J. Soil Sci. 56, 551-559.

Anon. 2006. MATLAB: The Language of Technical Computing. version 7.3.

Bouma, J. 1989. Using soil survey data for quantitative land evaluation. Adv. Soil Sci. 9, 177-213.

Brakensiek, D. L., Rawls, W. J. and Stephenson, G. R. 1984. Modifying SCS hydrologic soil groups and curve numbers for rangeland soils. ASAE Paper PNR-84-203. St. Joseph. MI 49085-9659. USA.

Campbell, G. S. 1985. Soil Physics with Basic. Elsevier. New York.

Carman, P. C. 1938. The determination of the specific surface of powders. J. Soc. Chem. Ind. Trans. 57, 225.

Carman, P. C. 1956. Flow of gases through porous media. Butterworths. Scientific Pub. London.

Carrier, W. D. 2003. Goodbye, Hazen; Hello, Kozeny-Carman. J. Geotech. Geoenviron. Eng. 129, 1054-1056.

Cosby B. J., Hornberger, G. M., Clapp, R. B. and Ginn, T. R. 1984. A statistical exploration of soil moisture characteristics to the physical properties of soils. Water Resour. Res. 20, 682-690.

Dane, J. H. and Puckett, W. 1994. Field soil hydraulic properties based on physical and mineralogical information. In: van Genuchten, M. Th. (Eds) Proceedings of the International Workshop on Indirect Method for Estimation Hydraulic Properties of Unsaturated Soils. California University. Riverside. CA. 389-403.

Dexter, A. R. 2004. Soil physical quality Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 120, 201-214.

Doaee, M., Shabanpour sharestani, M. and Bagheri, F. 2005. Modeling saturated hydraulic conductivity in clay soils in guilan province (Iran) using artificial neural networks. J. Agric. Sci. 1: 41-48. (in Farsi)

Franzmeier, D. P. 1991. Estimation of hydraulic conductivity from effective porosity data for some Indiana soils. Soil Sci. Soc. Am. J. 55: 1801-1803.

Ghanbarian-Alavijeh, B., Lighat, A. M., Shorafa, M. and Moghimi-Araghi, S. 2008. Prediction of soil water retention curve using soil particle-size distribution. J. Agric. Eng. Res. 9, 63-80. (in Farsi)

Haverkamp, R., Zammit, C., Boubkraoui, F., Rajkai, K., Arrúe, J. L. and Heckmann, N. 1997. GRIZZLY. Grenoble soil catalogue: Soil survey of field data and description of particle-size, soil water retention and hydraulic conductivity functions. LTHE. Grenoble. France.

Hazen, A. 1911. Discussion of Dams on sand foundations by A. C. Koenig. Trans. Am. Soc. Civ. Eng. 73, 199-203.

Huang, G. and Zhang, R. 2005. Evaluation of soil water retention curve with the pore-solid fractal model. Geoderma. 127, 52-61.

Jabro, J. D. 1992. Estimation of saturated hydraulic conductivity of soils from particle size distribution and bulk density data. Trans. ASAE. 35, 557-560.

Jain, A. and Kumar, A. 2006. An evaluation of artificial neural network technique for the determination of infiltration model parameters. Appl. Soft Comput. 6, 272-282.

Karamooz, M. and Araghinejad, S. 2005. Advance Hydrology. Amir Kabir University Pub. (in Farsi).

Kozeny, J. 1927. Ueber kapillare Leitung des Wassers im Boden. Wien. Akad. Wiss. 136, 271.

Leij, F.  J., Alves, W.  J., van Genuchten, M. Th. and Williams, J. R. 1996. Unsaturated soil hydraulic database. UNSODA 1.0 user’s manual. Rep. EPA/600/R96/095. USEPA. Ada.

Marshall, T. J. 1958. A relation between permeability and size distribution of pores. European J. Soil Sci. 9, 1-8.

Menhaj, M. 2000. Fundamental of artificial neural network. Amir kabir Pub. (in Farsi)

Merdun, H., Ozer, C., Meral, R. and Apan, M. 2006. Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil Till. Res. 90, 108-116.

Messing, I. 1989. Estimation of saturated hydraulic conductivity in clay soils from soil moisture retention data. Soil Sci. Soc. Am. J. 53, 665-668.

Minasny, B. and McBratney, A. B. 2002. Neural Networks Package for fitting pedotransfer function. Technical Notes. Version 1.0.

Navabian, M., Liaghat, A. M. and Homaee, M. 2004. Estimating soil saturated hydraulic conductivity using pedotransfer functions. J. Agric. Eng. Res. 4, 1-11. (in Farsi)

Pachepsky, Y. A., Timlin, D. J. and Ahuja, L. R. 1999. Estimating saturated soil hydraulic conductivity using water retention data and neural networks. Soil Sci. 164, 552-560.

Parasuraman, K., Elshorbagy, A. and Si, B. C. 2006. Estimating saturated hydraulic conductivity in spatially variable fields using neural network in Ensembles. Soil Sci. Soc. Am. J. 70, 1851-1859.

Puckett, W. E., Dane, J. H. and Hajek, B. F. 1985. Physical and mineralogical data to determine soil hydraulic properties. Soil Sci. Soc. Am. J. 49, 831-836.

Rawls, W. J., Brakensiek, D. L. and Saxton, K. E. 1982. Estimation of soil water properties. Trans. ASAE. 25, 1316-1320.

Rawls, W. J., Brakensiek, D. L. and Logsdon, S. D. 1993. Predicting saturated hydraulic conductivity utilizing fractal principles. Soil Sci. Soc. Am. J. 57, 1193-1197.

Rawls, W. J., Gimenez, D. and Grossman, R. 1998. Use of soil texture, bulk density, and slope of the water retention curve to predict saturated hydraulic conductivity. Trans. ASAE. 41, 983-988.

Saxton, K. E., Rawls, W. J., Romberger, J. S. and Papendick, R. I. 1986. Estimating generalized soil water characteristics from texture. Soil Sci. Soc. Am. J. 50, 1031-1036.

Schaap, M. G., Leij, F. J. and van Genuchten, M. Th.2001. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions, J. Hydrol. 251, 163-176.