مقیاس‌بندی و بررسی تغییرات مکانی ویژگی‌های نفوذ آب در خاک در مقیاس حوزه آبریز (مطالعه موردی: دشت باجگاه)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی‌ ارشد مهندسی آبیاری و زهکشی

2 استاد بخش مهندسی آب دانشکده کشاورزی، دانشگاه شیراز

چکیده

به منظور تخمین پارامترهای نفوذ آب در مقیاس منطقه، مطالعه­ تغییرپذیری مکانی خصوصیات نفوذ آب در خاک ضروری است.  بر پایه­ آزمایش­هایی روی پساب تصفیه شده در حوضه آبریز باجگاه، این پژوهش به مقیاس­بندی (scaling) پارامترهای نفوذ آب مدل دو جزئی فیلیپ و تحلیل تغییرپذیری مکانی خصوصیات نفوذ آب در خاک با استفاده از روش­های مقیاس­بندی و زمین­آمار پرداخته است.  سی آزمایش نفوذ آب در یک الگوی تصادفی در منطقه مورد مطالعه با استفاده از استوانه­های دوگانه اجرا شد.  خصوصیات نفوذ آب منطقه، سرعت نفوذ پایه کمی را برای اکثر مکان­ها نشان می­دهد (001/0 تا 178/0 سانتی­متر در دقیقه).  مدل فیلیپ به عنوان یک مدل مناسب برای توصیف فرآیند­های نفوذ آب به داده­های
اندازه­گیری شده برازش شد.  پارامترهای این مدل (ضریب جذب S و فاکتور انتقال A) تغییرات وسیعی در مکان­های آزمایشی نشان دادند.  فاکتور مقیاس­بندی بر اساس ضریب جذب αS و فاکتور انتقال Aα محاسبه و داده­های نفوذ آب مقیاس­بندی شدند.  نتایج نشان می­دهد که مقیاس­بندی با αA بهتر از مقیاس­بندی با αS است.  سپس، فاکتورهای بهینة αopt با استفاده از روش حداقل مربعات (گزینه Solver) به ­دست آمد و مقیاس­بندی داده­های نفوذ آب تکرار شد.  مقیاس­بندی با استفاده از میانگین­های حسابی، هندسی، و هارمونیک فاکتورهای مقیاس­بندی αS و αA نیز انجام شد.  نتایج نشان می­دهد که αopt و فاکتور مقیاس­بندی αA، داده­های نفوذ آب را از دیگر فاکتورها مقیاس­بندی مؤثرتر (مجموع مربع خطاهای کمتر)
می­کنند.  نتایج این پژوهش نشان می­دهد که منطقه­ی مورد مطالعه تغییرپذیری مکانی وسیعی دارد و نقشه تغییرات مکانی فاکتور مقیاس­بندی αA با استفاده از نرم­افزار ArcGIS نیز نشان می­دهد که مقدار این فاکتور از مرکز به اطراف، با کم شدن مقدار رس خاک، افزایش می­یابد. 

کلیدواژه‌ها


عنوان مقاله [English]

Spatial Variability of Infiltration Characteristics at Watershed Scale: A Case Study of Bajgah Plain

چکیده [English]

Study of the spatial variability of infiltration characteristics is essential to estimating infiltration parameters on a local scale. The objectives of the present study were to scale the parameters of a Philip two-term model for infiltration and survey the variability of infiltration characteristics geostatistically using wastewater in the Bajgah catchment. Infiltration was measured at 30 points in a random pattern over the study area using double rings. Infiltration characteristics in the area showed a low basic infiltration rate for most sites (0.001-0.178 cm/min-1). The Philip infiltration model, the best model to describe infiltration characteristics, was fitted to the data. The parameters (sorptivity, hydraulic conductivity) showed wide variation across the sites. The sorptivity-based scaling factor (αS) and the hydraulic-based scaling factor (αA) were computed and the observed infiltration data were scaled based on these values. Results showed that scaling achieved using αA was better than that obtained using αS. The optimum scaling factors (αopt) were determined using the least squares method (Solver option) and scaling was repeated using αopt. Scaling factors based on the arithmetic, geometric and harmonic means of αS and αA were also computed. It was found that αopt and αA scaled the infiltration data more effectively (with lowest sum of squares error) than the other scaling factors. The results showed that the study area has high spatial variability. A map of αA developed using ArcGIS software showed that αA increased from the center to the surrounding areas as soil clay content decreased.

کلیدواژه‌ها [English]

  • Hydraulic conductivity
  • Philip Model
  • Scaling Factor
  • Sorptivity
  • Spatial Variability
Ahuja, L. R., Kozak, J. A., Andales, A. A. and Ma, L. 2007. Scaling parameters of the Lewis-Kostiakov water infiltration equation across soil textural classes and extension to rain infiltration. T. ASABE. 50(5): 1525-1541.

Amindin, E. and Sepaskhah. A. R. 2011. Effects of treated waste water on hydraulic conductivity, hydraulic diffusivity and soil water retention curve. Research Project Report. Irrigation Department. Shiraz University. Shairaz. Iran. (in Farsi)

Bonsu, M. 1997. Scaling infiltration using parameters of Philip infiltration equation. J. App. Sci. Technol. 2(1-2): 1-6.

Bouwer, H., Back, J. T. and Oliver, J. M. 1999. Predicting infiltration and ground-water mounds for artificial recharge. J. Hydrol. Eng. 4(4): 350-357.

Green, W. H. and Ampt, G. A. 1911. Studies of soil physics: I. Flow of air and water through soils.
J. Agric. Sci. 4(1): 1-24.

Hassan-Li, A. M. and Javan, M. 2005. Evaluation of municipal treated wastewater and its application in landscape (Case study: Marvdasht wastewater treatment plant). J. Environ. Study. 38, 23-30. (in Farsi)

Holtan, H. N. 1961. A Concept for Infiltration Estimates in Watershed Engineering. U. S. Department of Agriculture (USDA). Agricultural Research Service. Bulletin 41-51.

Horton, R. E. 1940. An approach towards a physical interpretation of infiltration capacity. Soil Sci. Soc. Am. Proc. 5, 399-417.

Kostiakov, A. N. 1932. On the dynamics of the coefficient of water percolation in soils and on the necessity of studying it from a dynamic point of view for the purposes of amelioration. Transactions of 6th Congress if Inter-national Society of Soil Science. Moscow. Russian. 17-21.

Lei, Z. D., Yang, S. X. and Xie, S. C. 1986. One-step method of scaling the soil hydraulic properties in the field. J. Hydraulic Eng. 12, 1-10.

Machiwal, D., Madan, K. J. and Mal, B. C. 2006. Modelling infiltration and quantifying spatial soil variability in a wasteland of Kharagpur, India. Biosyst. Eng. 95(4): 569-582.

Miller, E. E. and Miller, R. D. 1956. Physical theory for capillary flow phenomena. J. Appl. Phys. 27,
324-332.

 

Nielsen, D. R., Hopmans, J. W. and Reichardt, K. 1998. An Emerging Technology for Scaling Field Soil-Water Behavior. In: Sposito, G. (Ed.) Scale Dependence and Scale Invariance in Hydrology. Cambridge University Press. Cambridge. U. K.

Philip, J. R. 1957. The theory of infiltration-3: moisture profiles and relation to experiment. Soil Sci.
84(2): 163-178.

Philip, J. R. 1987. The infiltration joining problem. Water Resour. Res. 23(12): 2239-2245.

Rasoulzadeh, A. and Sepaskhah, A. R. 2003. Scaled infiltration equations for furrow irrigation. Biosyst. Eng. 86(3): 375-383.

Sepaskhah, A. R. 1996. Application of three points Philip equation in estimation of saturated hydraulic conductivity. Second National Congress on Soil and Water Issues. Tehran. Iran (in Farsi)

Sharma, M. L., Gander, G. A. and Hunt, C. G. 1980. Spatial variability of infiltration in a watershed.
J. Hydrol. 45(1-2): 101-122.

Shirazi, M. A. and Boersma, L. 1984. A unifying quantitative analysis of soil texture. Soil Sci. Soc. Am. J. 48(1): 142-147.

Talsma, T. 1969. In situ measurement of sorptivity. Aust. J. Soil Res. 7, 269-276.

Tillotson, P. M. and Nielsen, D. R. 1984. Scale factors in soil science. Soil Sci. Soc. Am. J. 48(5): 953-959.

Warrick, A. W. and Nielsen, D. R. 1980. Spatial variability of Soil Physical Properties in the Field. In: Hillel, D. (Ed.) Applications of Soil Physics. Academic Press. NewYork.

Warrick, A. W., Mullen, G. J. and Nielsen, D. R. 1977. Prediction of the soil-water flux based upon field-measured soil-water properties. Soil Sci. Soc. Am. J. 41(1): 4-19.